
Mrs Hampton is potting plants.

She is using two mathematically similar pots, the smaller is 10cm tall and the larger 14cm tall.

She has two bags of soil, each containing 30 litres of soil.

With the first bag, Mrs Hampton fills 20 small pots using all of the soil in the bag.

How many large pots can be filled completely using the second bag of soil?

$$30 \div 20 = 1.5$$
 litres
 $1.5 \times 1.4^3 = 4.116$ litres
 $30 \div 4.116 = 7.28...$

7 (5) 3.3 Declan ran a distance of 200m in a time of 26.2 seconds.

The distance of 200m was measured to the nearest 10 metres. The time of 26.2 was measured to the nearest tenth of a second.

Work out the upper bound for Declan's average speed.

$$34$$
. (a) Solve $y^2 + 9y + 2 = 8y + 58$

$$y^{2}+y-56=0$$

 $(y+8)(y-7)=0$
 $y=-8$ or $y=7$

$$y = -8$$
 or $y = 7$ (2)

(b) Solve
$$5x^2 + 19x - 4 = 0$$

 $(5 \times -1)(x + 4) = 0$
 $5x = 1$ or $x = -4$
 $x = \frac{1}{5}$

21= 1/5 or X=-4

(2)

35 . Solve the equation $x^2 - 2x - 9 = 0$

Give your answers to two decimal places.

$$a = 1$$

 $b = -2$
 $c = -9$

$$X = -b + \sqrt{b^2 - 4ac}$$

$$x = 2 \pm \sqrt{(-2)^2 - 4(1)(-9)}$$

 $2x1$

$$x = .4 \cdot 16$$
 or $x = -2 \cdot 16$ (3)

3b. The *n*th term of a sequence is 4n-7

(a)	Write	down	tha	firet	throo	torme	of	tho	sequence.
(4)	AALIFO	COMMI	UIG	III St	1111100	1911112	UI	uie	sequence.

1st term — 3,	2nd term,	3rd term5
		(2)

(b) What is the difference between the 150th and 151st terms?

<u>4</u> (1)

The last term of this sequence is 393.

(c) How many terms are there in this sequence?

$$4n-7 = 393$$
 $4n=400$
 $n=100$
(2)

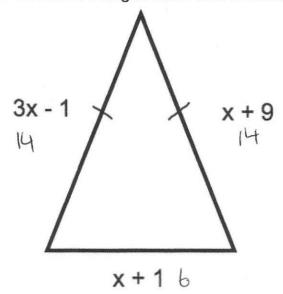
37 . Here are the first 5 terms of a quadratic sequence

9 17 29 45 65

Find an expression, in terms of n, for the nth term of this quadratic sequence.

20

20=4 a=2

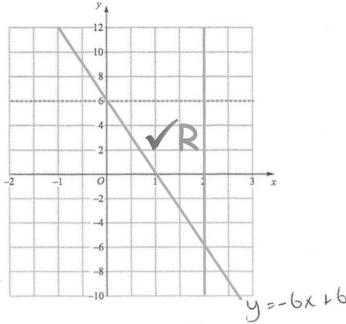

$$3a+b=8$$
 $a+b+c=9$
 $3(2)+b=8$ $2+2+c=9$
 $b=2$ $C=5$

 $2n^{2}+2n+5$

(3

38

Shown below is an isosceles triangle. Each side is measured in centimetres.



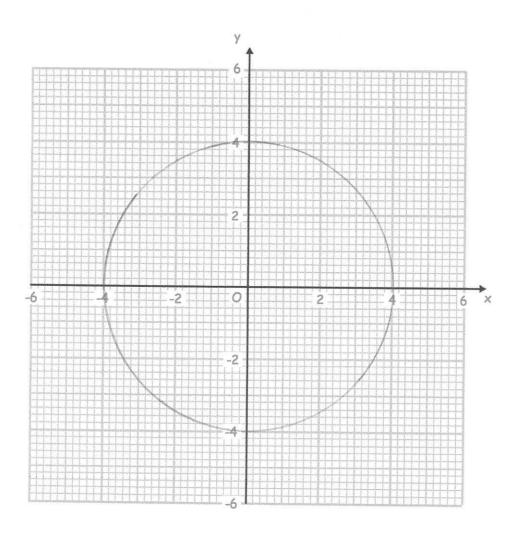
Find the perimeter of the triangle

$$3x-1 = x+9$$

 $2x = 10$
 $x = 5$

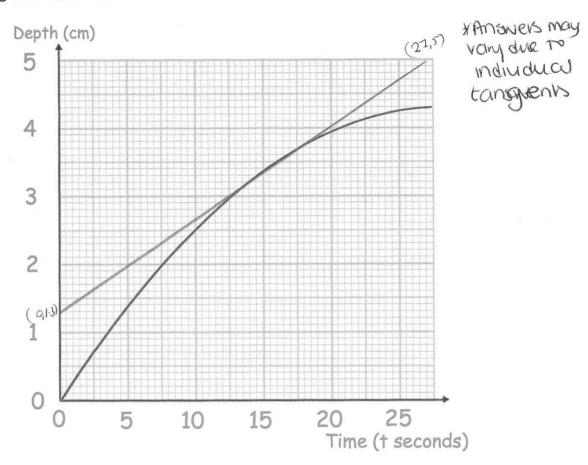
34Cm (4)

39


The region labelled R satisfies three inequalities.

07-6

State the three inequalities


 9	4	6	 	
 <u>.</u>				
 .y.?			+ (0
 			 	(3)

40. Draw the circle with equation $x^2 + y^2 = 16$

4 . Jack is filling a container with water.

The graph shows the depth of the water, in centimetres, t seconds after the start of filling the container.

(a) Calculate an estimate for the gradient of the graph when t = 15 seconds.

$$\frac{\text{Rise}}{\text{Run}} = \frac{3.7}{27}$$

0·137 (3)

(b) Describe fully what your answer to (a) represents

It is the feature at which the depth of water in the Container is increasing 0.137 cm per second.

(2)

(c) Explain why your answer to (a) is only an estimate

It is only a hand totrain tangent - it may not be precise

(a) Show that the equation $x^3 + 2x = 1$ has a solution between x = 0 and x = 1

$$x^3 + 2x - 1 = 0$$

when
$$x=0$$
 $0^3+2(0)-1=-1$
 $x=1$ $1^3+2(1)-1=2$

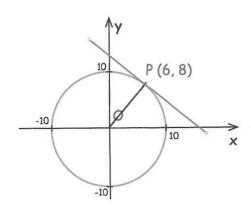
Since there is a change in sign between
$$x=0$$
 $x=1$ there is a solution. (2)

(b) Show that the equation $x^3 + 2x = 1$ can be rearranged to give $x = \frac{1}{2} - \frac{x^3}{2}$

$$2k = 1 - x^3$$

$$X = \frac{1}{2} - \frac{X^3}{2}$$

(1)


(c) Starting with $x_0=0$, use the iteration formula $x_{n+1}=\frac{1}{2}-\frac{x_n^3}{2}$ twice to find an estimate for the solution of $\mathbf{x^3}+2\mathbf{x}=\mathbf{1}$

$$X_1 = \frac{1}{2} - \frac{0^3}{2} = 0.5$$

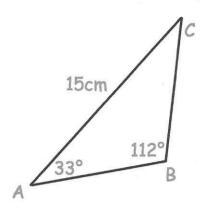
$$x_2 = \frac{1}{2} - \frac{0.5^3}{2} = 0.4375$$

(3)

43. Here is a circle, centre O, and the tangent to the circle at the point (6, 8).

Find the equation of the tangent at the point P.

$$y = -\frac{3}{4} \times + C$$


$$y = -\frac{3}{4} \times + \frac{25}{2}$$

$$y = -\frac{3}{4} \times + \frac{25}{2}$$
(4)

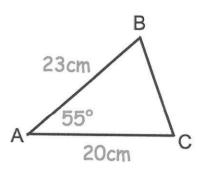
or

 $y = -0.75 \times +12.5$

44. (a)

In triangle ABC the length of AC is 15cm.

Angle ABC = 112°

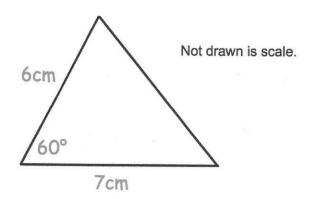

Angle BAC = 33°

Work out the length of BC.

$$\frac{x}{\sin 33} = \frac{15}{\sin 112}$$

.....8⋅≥1.cm (3)

(b)

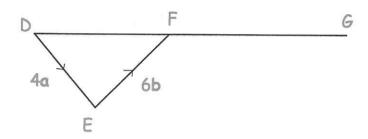


Calculate the length of BC.

$$\chi^2 = 23^2 + 20^2 - 2(20)(23)(0055$$

20.03 cm

45



Calculate the area of the triangle.

$$\frac{1}{2}$$
 (6)(7)Sin60

.....18:19...cm² (2)

DFG is a straight line.

(a) Write down the vector **DF** in terms of **a** and **b**

(b) DF: FG = 2:3

Work out the vector **DG** in terms of **a** and **b** Give your answer in its simplest form.

$$(40+6b) \div 2 = 20+3b$$

 $(29+3b) \times 5$

47. There are

There are 8 sweets in a bag.

Three sweets are red, three sweets are blue and two sweets are green.

Three sweets are selected at random without replacement.

Calculate the probability that the sweets are not all the same colour.

$$1 - \frac{2}{56} = \frac{54}{56}$$

(4)

48 . Solve the simultaneous equations

$$2x + y = 5$$

 $2x^2 + y^2 = 1148$

$$2 \times^2 + (5-2x)(5-2x) = 11$$

$$2x^2 + (25 - 20x + 4x^2) = 11$$

$$6x^2 - 20x + 14 = 0$$

$$3x^2 - 10 \times +7 = 0$$

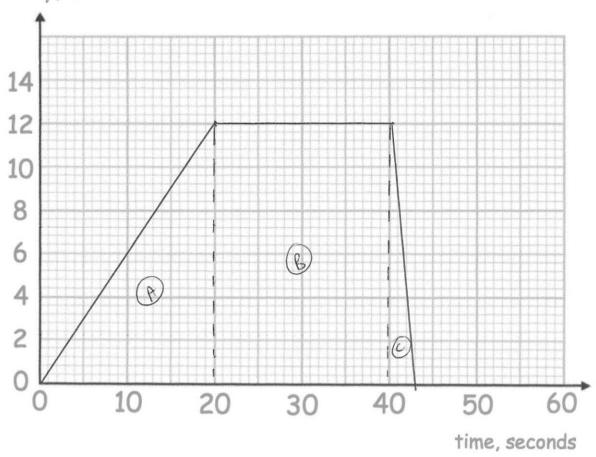
$$(x-1)(3x-7)=0$$

$$y = 3$$
 or $y = 1/3$

$$x=1$$
, $y=3$ or $x=\frac{7}{3}$, $y=\frac{1}{3}$

49.

A remote control car drives in a straight line.


It starts from rest and travels with constant acceleration for 20 seconds reaching a velocity of 12m/s.

It then travels at a constant speed for 20 seconds.

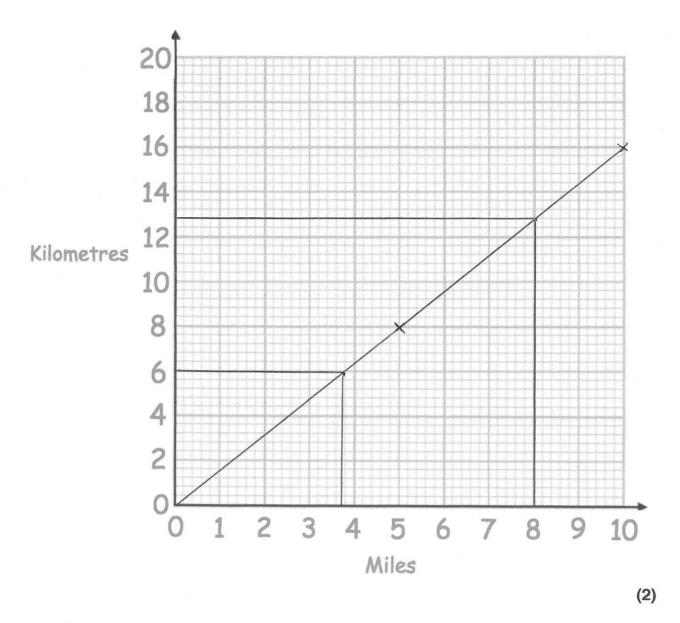
It then slows down with constant deceleration of 4m/s2.

(a) Draw a velocity time graph

Velocity, m/s

(b) Using your velocity-time graph, work out the total distance travelled.

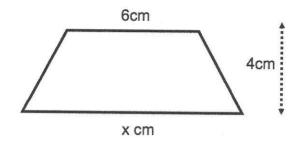
$$A = \frac{1}{2}(20)(12) = 120$$


$$C = \frac{1}{2}(3)(12) = 18$$

50. A supermarket sells Baked Beans in two different size cans.

Which size can is the best value for money? You must show all your working.

(a) Use the fact 5 miles = 8 kilometres to draw a conversion graph on the grid.



Use your graph to convert

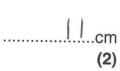
(b) 8 miles to kilometres

(c) 6 kilometres to miles

52.

The area of the trapezium is 34cm².

Work out the value of x.


$$A = \frac{1}{2}(a+b)h$$

$$34 = \frac{1}{2}(6+x)4$$

$$68 = (6+x)4$$

$$17 = 6+x$$

$$30 = 11$$

The number of passengers on 10 buses was recorded. The stem and leaf diagram shows this information.

Key: 1 4 means 14 passengers

(a) Work out the median.

A bus is selected at random.

(b) What is the probability the bus has more than 20 passengers?

The next bus has 32 passengers.

(c) Tick the box to show how this will effect the range.

The range will decrease The range will stay the same increase
$$30-7=23$$

$$32-7=25$$

(1)

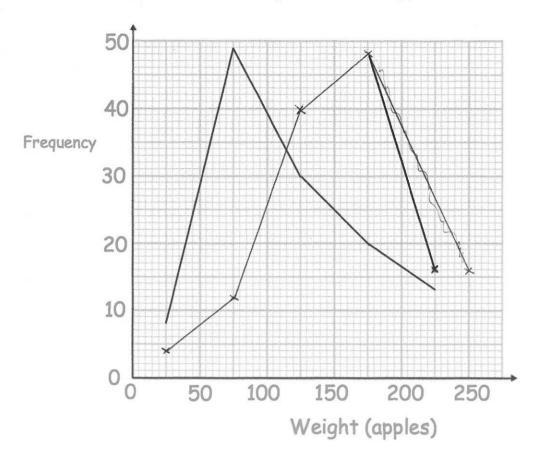
54. 100 people study one language at a college.

Some people study French. Some people study Spanish. The rest of the people study German.

54 of the people are male.

20 of the 29 people who study Spanish are female.

31 people study German.


15 females study French.

Work out the number of males who study German.

	Male	Female	Total
French	25	15	40
Spanish	9	20	29
German	20	11	31
Total	54	46	100

20

The frequency polygon shows the weights of 120 red apples.

The table shows the weights of 120 green apples.

Weight (kg)	Frequency	
0 < w ≤ 50	4	
50 < w ≤ 100	12	
100 < w ≤ 150	40	
150 < w ≤ 200	48	
200 < w ≤ 250	16	

(a) Draw a frequency polygon to show this information on the diagram above.

(2)

(b) Compare the two distributions.

The weights of the green oppies are higher I heavier than the red oppies; the peak (made) for the green oppies is much further to the right.

56. Simplify

$$\frac{a^{\frac{1}{5}} \times a^{\frac{2}{3}}}{a^{\frac{3}{5}}} \qquad \frac{1}{5} + \frac{2}{3} = \frac{13}{15}$$

$$\frac{13}{15} - \frac{3}{5} = \frac{4}{15}$$

....Q⁴/15

57. v = u + at

Work out \mathbf{a} when v = 62, u = 250 and t = 8

$$a = -23.5$$

(3)

58

Nigel measures the time, t seconds, to complete a race as 15.4 seconds correct to the nearest tenth of a second.

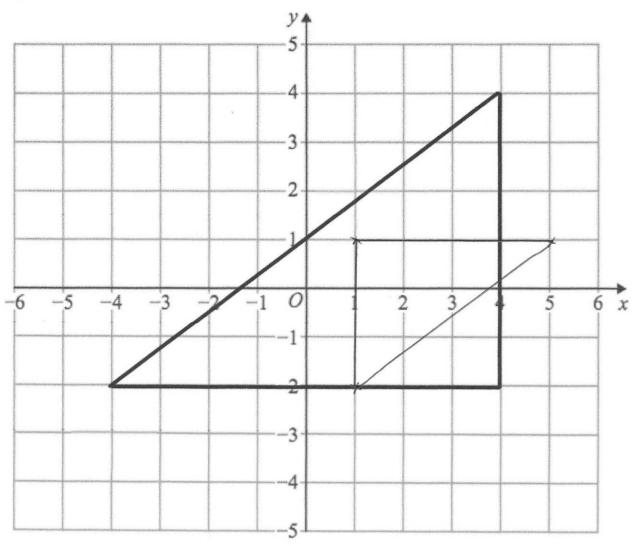
Write down the error interval for t.

15.35 St < 15.45

(2)

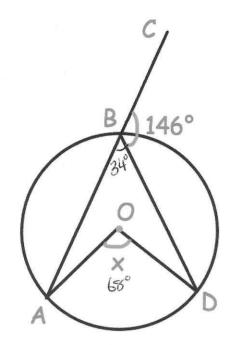
99. Expand and simplify (x-6)(x+1)(x-2)

$$(x-6)(x+1) = x^2-5x-6$$


$$(x^2-5x-6)(x-2)$$

$$x^3-2x^2-5x^2+10x-6x+12$$

$$x^3-7x^2+4x+12$$


$$x^3 - 7x^2 + 4x + 12$$
 (4)

60.

Enlarge the triangle by scale factor $-\frac{1}{2}$, using centre of enlargement (2, 0)

(3)

Shown is a circle with centre O. ABC is a straight line.
Angle CBD is 146°

Find the size of angle AOD.

....68 ...

(3)