Candidate surname	Other names					
Pearson Edexcel Level 1/Level 2 GCSE (9–1)	e Number Candidate Number					
Tuesday 11 June 2019						
Morning (Time: 1 hour 30 minutes)	Paper Reference 1MA1/3H					
Mathematics Paper 3 (Calculator) Higher Tier						
You must have: Ruler graduated in cer protractor, pair of compasses, pen, HB p Tracing paper may be used.						

Instructions

- Use black ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You must show all your working.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- Calculators may be used.
- If your calculator does not have a π button, take the value of π to be 3.142 unless the question instructs otherwise.

Information

- The total mark for this paper is 80
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

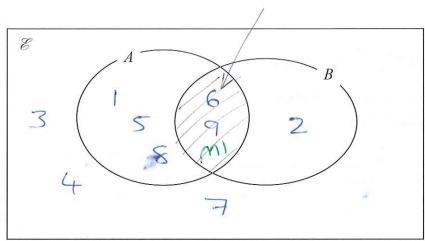
Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

6/7/1/1/1/1/1/

Answer ALL questions.


Write your answers in the spaces provided.

You must write down all the stages in your working.

ANB

 $\mathcal{E} = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

 $A = \{1, 5, 6, 8, 9\}$ $B = \{2, 6, 9\}$

(a) Complete the Venn diagram to represent this information.

(3)

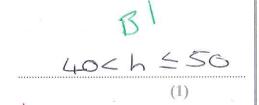
A number is chosen at random from the universal set \mathscr{E} .

(b) Find the probability that the number is in the set $A \cap B$

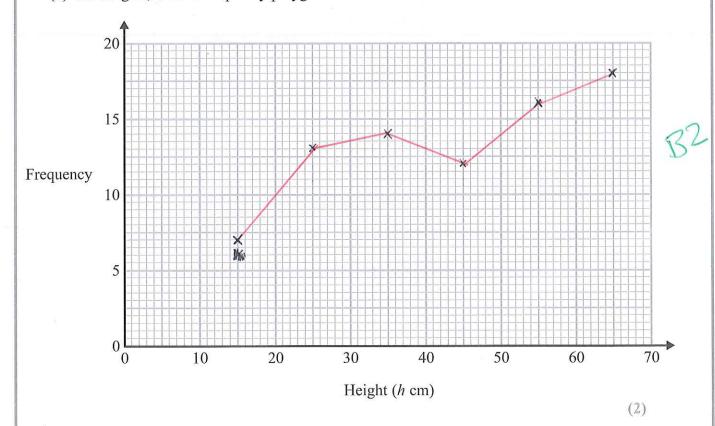
(2)

(Total for Question 1 is 5 marks)

Katy invests £200 000 in a savings account for 4 years. The account pays compound interest at a rate of 1.5% per annum.

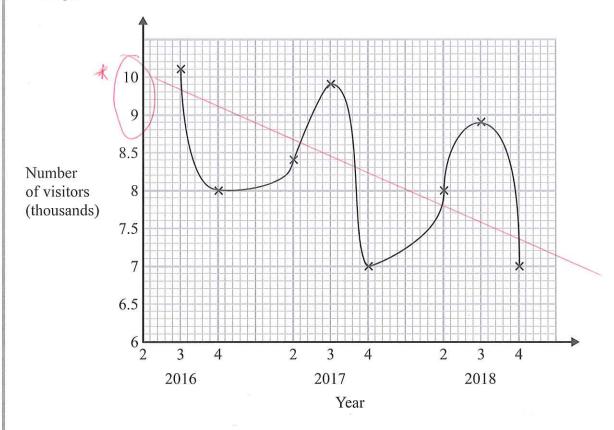

Calculate the total amount of interest Katy will get at the end of 4 years.

$$=$$
 £212,272.7101


3 The table shows information about the heights of 80 plants.

r~	NIG	
Height (h cm)	Frequency	CF
$10 < h \leqslant 20$	(15, 7)	7
$20 < h \leqslant 30$	(25 , 13)	20
$30 < h \leqslant 40$	35 , 14)	34
$>$ 40 $<$ $h \le 50$	(45 , 12)	46
$50 < h \leqslant 60$	(55 , 16)	62
$60 < h \leqslant 70$	65 18	80
	Height (h cm) 9 $10 < h \le 20$ $20 < h \le 30$ $30 < h \le 40$ $\Rightarrow 40 < h \le 50$ $50 < h \le 60$	$10 < h \le 20$ (15, 7) $20 < h \le 30$ (25, 13) $30 < h \le 40$ (35, 14) $\Rightarrow 40 < h \le 50$ (45, 12) $50 < h \le 60$ (55, 16)

(a) Find the class interval that contains the median.


(b) On the grid, draw a frequency polygon for the information in the table.

(Total for Question 3 is 3 marks)

5

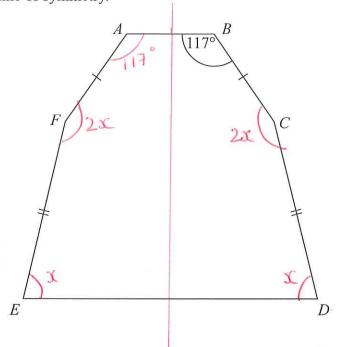
4 Sean has drawn a time series graph to show the numbers, in thousands, of visitors to a fun park.

Write down two things that are wrong or could be misleading with this graph.

1 A time series graph should have a trend line rather than Johning up all points this would show a decreasing trend.

2 * Scale must be consistent and should go 9, 9-5, 10

whereas 9.5 is missed and


(Total for Question 4 is 2 marks)

3 Points could be joined with straight lines but

4 horizontal not fully labelled such (what does 2,3,4 represent?)

The diagram shows a hexagon. The hexagon has one line of symmetry.

$$FA = BC$$

 $EF = CD$
Angle $ABC = 117^{\circ}$

Angle $BCD = 2 \times \text{angle } CDE$

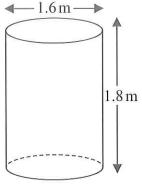
Work out the size of angle AFE. You must show all your working.

Let angle CDE = x, then BCD = 2x MSince the hexagon is symmetrical, BAF = ABC AFE = BCD

:. AFE =
$$2x$$

= $2x81$
= 162 =

162


(Total for Question 5 is 4 marks)

6 Jeremy has to cover 3 tanks completely with paint.

Each tank is in the shape of a cylinder with a top and a bottom. The tank has a diameter of 1.6 m and a height of 1.8 m.

Jeremy has 7 tins of paint. Each tin of paint covers 5 m²

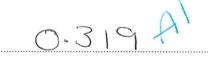
Has Jeremy got enough paint to cover completely the 3 tanks? You must show how you get your answer.

Surface Area Cylinder = 2TTr2 + 2TTrb = 2xTT x 0.82 + 2xTT x 0.8 x 1.8 = 1.28TT + 2.88TT = 4.16TT = 13.06902544 m²

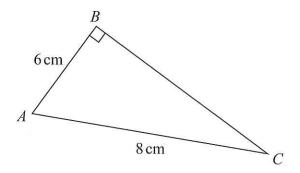
Jeremy has enough paint to cover 7 x 5m2 = 35m2 Pl

the needs to cover $3 \times 13.06902544 \text{ m}^{2}$ = $39.20707632 \text{ m}^{2}$ = 39.2 m^{2} (3sf) PI

the does not have enough- the will have 4.2 m² not covered.

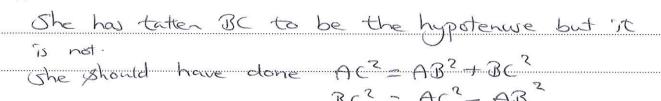

(Total for Question 6 is 5 marks)

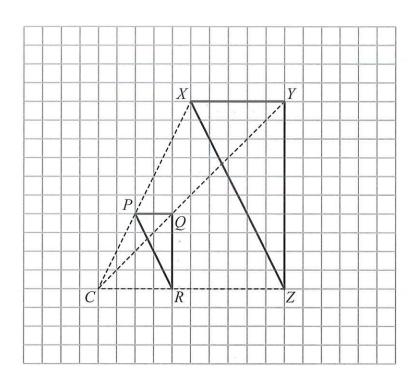
7 Work out


$$\sqrt{\frac{2.5 \times \sin 43^{\circ}}{8.2^2 - 50.5}}$$

Give your answer correct to 3 significant figures.

(Total for Question 7 is 2 marks)


8 *ABC* is a right-angled triangle.


Here is Sarah's method to find the length of BC.

$$BC^{2} = AB^{2} + AC^{2}$$
$$= 6^{2} + 8^{2}$$
$$= 100$$
$$BC = 10$$

(a) What mistake has Sarah made in her method?

$$= 8^{2} - 6^{2}$$
 (1)
= 28
BC = $\sqrt{28}$

Roy is going to enlarge triangle PQR with centre C and scale factor $1\frac{1}{2}$

C 1

He draws triangle *XYZ*.

(b) Explain why Roy's diagram is not correct.

the has enlarged by scale factor 22 not 12.

Side XX is 5 squares but should be 3

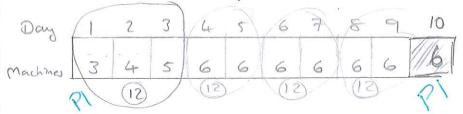
Side YZ is 10 squares but should be 6

(1)

(Total for Question 8 is 2 marks)

A company has to make a large number of boxes.

The company has 6 machines.


All the machines work at the same rate.

When all the machines are working, they can make all the boxes in 9 days.

The table gives the number of machines working each day.

	day 1	day 2	day 3	all other days
Number of machines working	3	4	5	6

Work out the total number of days taken to make all the boxes.

12 machines for 3 days will do what 6 machines/day would take 2 days for.

... an extra day needed

(Total for Question 9 is 3 marks)

Day 1 3 machines (half as much as 6 machines)

9 machines (12 days production in 2 days)

: 2 day production short

to catch up 2 + 2 day = 1 day extra

10 Marie invests £8000 in an account for one year. At the end of the year, interest is added to her account.

Marie pays tax on this interest at a rate of 20% She pays £28.80 tax.

Work out the percentage interest rate for the account.

Interest x0.2

Litterest 28.80 tax

PI Tinterest = £144

At the end of the year marie has £8000 + £164
= £8164
Before Tax

Interest

£8000 × 71.018 P1

8144 - 1-018

". £8144 15 101.8% of £8000 Werest rate = 1.8%

A1

(Total for Question 10 is 3 marks)

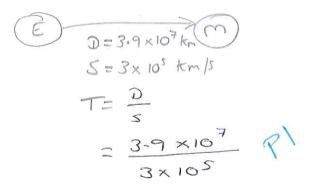
1 terrative method

26% = £28.80

x5
100% = £144

Interest = 144 × 100

= 1.8% = 0.018 × 100



11 In May 2019, the distance between Earth and Mars was 3.9×10^7 km.

In May 2019, a signal was sent from Earth to Mars.

Assuming that the signal sent from Earth to Mars travelled at a speed of 3×10^5 km per second,

(a) how long did the signal take to get to Mars?

130 seconds

The speed of the signal sent from Earth to Mars in May 2019 was actually less than 3×10^5 km per second.

(b) How will this affect your answer to part (a)?

The signal would take longer to get to Mas since it is travelling more slowly.

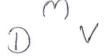
(1)

(Total for Question 11 is 3 marks)

12 Patrick has to work out the exact value of $64^{\frac{1}{4}}$

MW 188

Patrick says,


"
$$\frac{1}{4}$$
 of 64 is 16 so $64^{\frac{1}{4}} = 16$ "

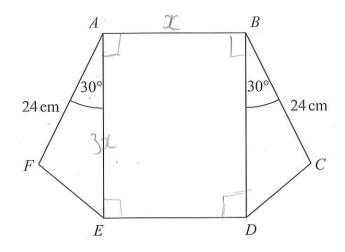
Explain what is wrong with what Patrick says.

power of to means fourth root) 5° 664 = \$16 C

(Total for Question 12 is 1 mark)

13 The density of ethanol is 1.09 g/cm³ The density of propylene is 0.97 g/cm³

60 litres of ethanol are mixed with 128 litres of propylene to make 188 litres of antifreeze.


Work out the density of the antifreeze.

Give your answer correct to 2 decimal places.

$$\begin{array}{c}
1 = \frac{600}{188600} \\
= 1.008297872 \\
1.00 - 71.01 & A \\
1.00 - 9/cm^3
\end{array}$$

(Total for Question 13 is 4 marks)

14 The diagram shows a rectangle, ABDE, and two congruent triangles, AFE and BCD.

area of rectangle ABDE = area of triangle AFE + area of triangle BCD

$$AB : AE = 1 : 3$$

Work out the length of AE.

Area AEF =
$$\frac{1}{2}(AE)(AF)SIn30$$

= $\frac{1}{2} \times 3X \times 24 \times SIn30$
= $\frac{1}{2} \times 3X \times 24 \times \frac{1}{2}$
Area BCP = $\frac{1}{2} \times 3X \times 24 \times \frac{1}{2}$
= $\frac{1}{2} \times 3X \times 24 \times \frac{1}{2}$

Area ABDE = Area BCD + Area AFE

$$3x^2 = 18x + 18x$$

$$3x^2 = 36x$$

$$x^2 = 12x$$

$$x^2 = 12x$$

$$x^2 - 12x = 0$$

$$x(x - 12) = 0$$

$$x(x - 12) = 0$$

$$x = 12$$

$$AE = 3x$$

= $3x^{12}$
= $36cm$ A

36 cm

oc cannot be o as we

(Total for Question 14 is 4 marks)

15 The graph of the curve C with equation y = f(x) is transformed to give the graph of the curve S with equation y = f(-x) - 3

The point on C with coordinates (7, 2) is mapped to the point Q on S.

Find the coordinates of Q.

$$y = f(-\infty) - 3$$

$$f = f(-\infty) -$$

(-7 , -1)

(Total for Question 15 is 2 marks)

16 Here are the first six terms of a quadratic sequence.

MW 213

-1 5 15 29 47 6

Find an expression, in terms of n, for the nth term of this sequence.

$$a+b+(-1)$$
 5 15 29 47 69

 $3a+b$ 6 10 14 18 22

 $2a$ 4 4 4 4 M

method 1

2nd diff 4 \therefore 2n²

n 2n² Sequence

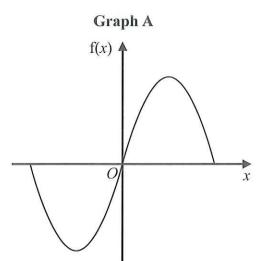
1 2 $\xrightarrow{-3}$ -1

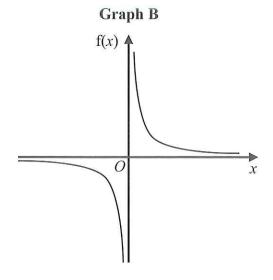
2 8 $\xrightarrow{-3}$ 5

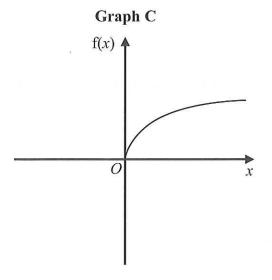
3 18 $\xrightarrow{-3}$ 15

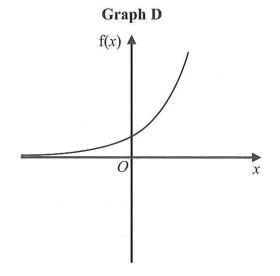
4 32 $\xrightarrow{-3}$ 29

5 50 $\xrightarrow{-3}$ 47


6 72 $\xrightarrow{-3}$ 69


method 2 an2+bn+c 2a=4 a=2 3a+b=6 $3\times 2+b=6$ 6+b=6 b=0 a+b+c=-1 2+0+c=-1 2+c=-1 c=-3 a=3 a=3


(Total for Question 16 is 3 marks)



17 Here are four graphs.

The graphs represent four different types of function f.

Match each description of the function in the table to the letter of its graph.

Description of function	Graph
f(x) is inversely proportional to x	B
f(x) is a trigonometrical function	A
f(x) is an exponential function	0
$f(x)$ is directly proportional to \sqrt{x}	C

B1 2003 correct B1 all correct

(Total for Question 17 is 2 marks)

18 (a) Show that (2x+1)(x+3)(3x+7) can be written in the form $ax^3 + bx^2 + cx + d$ where a, b, c and d are integers.

$$(x+3)(3x+7)$$
= $3x^2 + 7x + 9x + 21$ M
= $3x^2 + 16x + 21$
 $(2x+1)(3x^2 + 16x + 21)$

$$= 6x^{3} + 32x^{2} + 42x + 3x^{2} + 16x + 21$$

$$= 6x^{3} + 35x^{2} + 58x + 21$$

a=6, b=35, c=58, d=21

(b) Solve
$$(1-x)^2 < \frac{9}{25}$$

$$\frac{\text{method}1}{\left(1-x\right)^2-\frac{9}{25}}<0$$

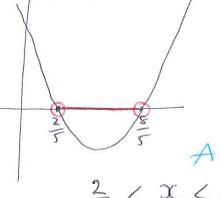
$$(1-x)(1-x)-\frac{9}{25}<0$$

$$1-x-x+x^2-\frac{9}{25}$$

$$\frac{16}{25} - 2x + x^2 < 0$$

$$(5x-2)(5x-8) < 0$$

$$(3=\frac{2}{5} \text{ or } x=\frac{8}{5} \text{ Key values MI}$$


method 2

$$(1-x)^2 < \frac{9}{25}$$

$$1-\infty<\frac{1}{3}$$

$$| \qquad \langle \, \pm \, \frac{2}{3} \, + \chi$$

$$M$$
 $1\pm\frac{3}{5}<\infty$ critical values $1=\frac{2}{5}$, $1=\frac{8}{5}$

3 CXC8

(3)

(Total for Question 18 is 6 marks)

[x25

19
$$D = \frac{u^2}{2a}$$

and correct

26.15 26.25

4-35

u = 26.2 correct to 3 significant figures

a = 4.3 correct to 2 significant figures

(a) Calculate the upper bound for the value of *D*. Give your answer correct to 6 significant figures. You must show all your working.

4-25

upper bound
$$D = \frac{(upper bound u)^2}{2 \times lone bound a}$$

$$= \frac{(26.25)^2}{2 \times 4.25}$$

AI

The lower bound for the value of D is 78.6003 correct to 6 significant figures.

(b) By considering bounds, write down the value of D to a suitable degree of accuracy. You must give a reason for your answer.

both values are equal to 2sf CI

" D = 80 (2sf) B

(2)

(Total for Question 19 is 5 marks)

20 Solve algebraically the simultaneous equations

$$x^2 - 4y^2 = 9$$
$$3x + 4y = 7$$

$$3x = 7 - 45$$

 $x = \frac{7}{5} - \frac{45}{5}$

$$(\frac{7}{3} - \frac{4}{3}y)^2 - 4y^2 = 9$$
 M

$$\left(\frac{7}{3} - \frac{4}{3}y\right)\left(\frac{7}{3} - \frac{4}{3}y\right) - 4y^2 = 9$$

$$-32 - 569 - 209^2 = 6$$
 [x-1

$$32 + 569 + 209^2 = 0$$

$$= 0$$

$$= 0$$

$$-32 - 56y - 20y^{2} = 6$$

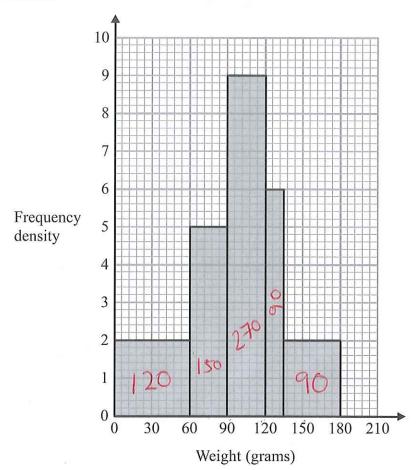
$$32 + 56y + 20y^{2} = 0$$

$$20y^{2} + 56y + 32 = 0$$

$$5y^{2} + 14y + 8 = 0$$

$$(5y+4)(y+2) = 0 MI$$

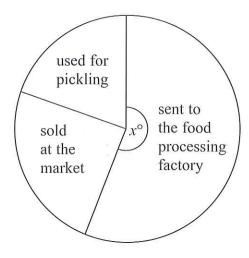
$$5y+4=0$$
 $y+2=0$
 $y=-\frac{4}{5}$
 $y=-2$


$$y = -\frac{4}{5}, x = \frac{7}{3} - \frac{4}{3}(-\frac{4}{5}) = \frac{17}{5}$$

$$y = -2$$
, $x = \frac{7}{3} - \frac{1}{3}(-2) = 5$

$$(\frac{17}{5}, -\frac{4}{5})$$
 $A(5, -2)$

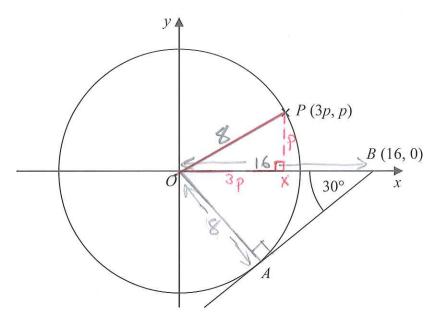
(Total for Question 20 is 5 marks)


21 The histogram gives information about the distribution of the weights of some onions grown by a farmer.

Onions less than 60 grams in weight are used for pickling. Onions greater than 120 grams in weight are sold at the market. The rest of the onions are sent to a food processing factory.

Trequency = area box 0 - 760 Frequency = $60 \times 2 = 120$ 60 - 90 Frequency = $30 \times 5 = 150 \times 120$ 90 - 9120 Frequency = $30 \times 9 = 270 \times 120$ 120 - 9135 Frequency = $15 \times 6 = 90$ 135 - 9180 Frequency = $45 \times 2 = 90$ + 135 - 9180 Frequency = $45 \times 2 = 90$ +

A pie chart is drawn using the information opposite to show what the farmer does with the onions he grows.



The angle of the sector for the onions sent to the food processing factory is x° .

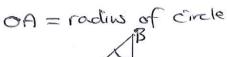
Work out the value of x.

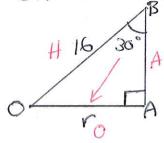
$$\frac{420}{720} = \frac{7}{12}$$
 Ml

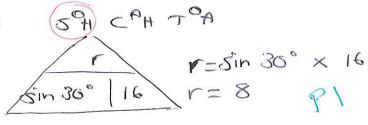
(Total for Question 21 is 4 marks)

AB is the tangent to the circle at the point A.

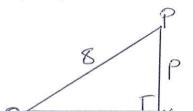
Angle $OBA = 30^{\circ}$

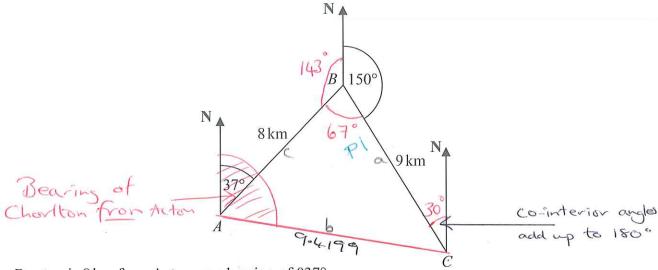

Point B has coordinates (16, 0)


Point P has coordinates (3p, p)


Find the value of p.

Give your answer correct to 1 decimal place.


You must show all your working.


OP = radius of Circle = 8 1. Distance between origh and point P is

(Total for Question 22 is 4 marks)

DO NOT WRITE IN THIS AREA

23 The diagram shows the positions of three towns, Acton (A), Barston (B) and Chorlton (C).

Barston is 8 km from Acton on a bearing of 037° Chorlton is 9 km from Barston on a bearing of 150°

Find the bearing of Chorlton from Acton.

Give your answer correct to 1 decimal place.

You must show all your working.

Bearing of Charles from Actor = 37°+61-57868521° 91 = 98-578685210 = 98.6° (1dp)

098-6 .

(Total for Question 23 is 5 marks)

TOTAL FOR PAPER IS 80 MARKS

BLANK PAGE

